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Abstract— Effective robotic systems for long-horizon human-
robot collaboration must adapt to a wide range of human
partners, whose physical behavior, willingness to assist, and
understanding of the robot’s capabilities may change over time.
This demands a tightly coupled communication loop that grants
both agents the flexibility to propose, accept, or decline requests
as they coordinate toward completing the task effectively. We
propose MICoBot, a system that enables the human and robot,
both using natural language, to take initiative in formulating,
accepting, or rejecting proposals on who can best complete
different steps of a task. To handle diverse, task-directed
dialog, and find successful collaborative strategies that minimize
human effort, MICoBot makes decisions at three levels: (1) a
meta-planner considers human dialog to formulate and code
a high-level collaboration strategy, (2) a planner optimally
allocates the remaining steps to either agent based on the robot’s
capabilities (measured by a simulation-pretrained affordance
model) and the estimated human’s willingness to help, and
(3) an action executor decides the low-level actions to perform
or words to say to the human. Our extensive evaluations in
simulation and real-world—on a physical robot with 18 unique
human participants over 27 hours—demonstrate our method’s
effectiveness at collaborating with diverse human users, yielding
significantly improved task success and user experience than
a pure LLM baseline and other agent allocation models. See
additional videos and materials at our project site.1

I. INTRODUCTION

Imagine preparing for a dinner party with a friend. Your
friend might excel at mixing drinks while you focus on
cooking the main dish. You are also better at decorating,
while both of you reluctantly negotiate over less desirable
tasks like cleaning.

Now, imagine a helper robot in place of the friend.
Current robots are not fully autonomous for many household
tasks, but they offer broad capabilities with varying levels
of reliability that can be leveraged through collaboration
with humans. To be an effective partner, such a robot
must communicate in physically grounded natural language,
decide when to take initiative or defer to the human, negotiate
task allocation based on strengths and preferences, and adapt
to changing contexts. These ingredients are essential not
only for collaborative household robots, but also for coding
assistants, chatbots, and AI agents more broadly.

Long-horizon tasks such as preparing for a party require
dynamic, bidirectional collaboration across control, initiative,
and communication. In particular, the ability to both take
initiative and yield control is central to effective human–AI
teamwork. However, current AI systems (e.g., chatbots)
typically rely on one-directional, human-initiated interac-
tions [1, 2], while prior human–robot interaction (HRI)

1https://mico-bot.github.io
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Fig. 1: We present MICoBot, a system for human-robot
collaboration where both agents can initiate and carry out
physical and verbal actions. MICoBot uses both the robot’s
capability and the likelihood of human helping (inferred from
previous dialog history) to determine whether the robot is
better suited than the human to perform the skill. If it is, it
attempts the skill itself. If not, it negotiates for human help.

approaches often assume fixed collaboration plans and full
human compliance [3]. Such assumptions limit flexibility
and fail to account for the diverse preferences, capabilities,
and strengths of different human partners. We argue that
effective human–robot collaboration requires a paradigm
shift toward mixed-initiative dialog as the communicative
medium, enabling both agents to initiate, negotiate, and
respond to proposals in natural language.

To enable this paradigm shift, we introduce MICoBot
(Mixed-Initiative Collaborative roBot), the first system that
supports mixed-initiative dialog for seamless human–robot
collaboration in the physical world. MICoBot allocates task
steps to the most suitable agent (see Fig. 1) in a way
that maximizes overall success, minimizes human effort,
and respects human-initiated requests. It achieves this by
engaging in mixed-initiative dialog and negotiation to decide
step allocation (see Fig. 2), while coordinating the physical
and verbal actions required to execute the plan.

To realize this objective across diverse humans and long-
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Fig. 2: MICoBot supports both robot-initiated (top row) and human-initiated (bottom row) task-directed speech2speech
dialog, where both agents discuss who is best suited to perform steps in a long-horizon task. These are real dialog and
physical interactions from our user studies (see our website1).

horizon tasks, MICoBot optimizes decision-making at three
levels. First, a meta-planner determines the high-level collab-
oration strategy, integrates human-specified preferences, and
generates adaptive code for robot actions (verbal or physical).
Second, a planner executes this code, selecting the optimal
collaboration approach based on the environment state, a
simulation-trained affordance model of robot capabilities,
and a dynamic estimate of human helpfulness derived from
prior interactions. Finally, an action executor carries out the
next step of the plan, whether it involves manipulation, dialog
initiation, or dialog response.

We validate MICoBot through extensive evaluation in
both simulation and the real world. In simulation, we test
against LLM-simulated humans with varying helpfulness and
responsiveness; in real-world experiments, 18 participants
collaborated with a TIAGo mobile manipulator on three
household tasks. Our approach improves success rate by
50% compared to a pure LLM baseline and is preferred by
over 75% of participants.

In summary, our contributions are:
• A new problem setting that integrates mixed-initiative

natural language dialog with mixed-initiative hu-
man–robot interaction.

• A novel optimization framework for task allocation
that balances human and robot effort with success
through a unified metric.

• A collaborative simulation environment built on
MiniBehavior [4], featuring LLM-controlled virtual hu-
mans, with an interactive demo on our project site.1

• A hierarchical robotic system, MICoBot, that enables
mixed-initiative speech-to-speech human–robot collab-
oration and flexibly adapts to diverse real human col-
laborators in physically grounded, long-horizon tasks.

II. RELATED WORK

Mixed-initiative dialog [5–7] refers to communication
with freeflowing questions and answers from both parties.
In the NLP field, the dominant chatbot paradigm adopted
by large language models (LLMs) largely eschews mixed-
initiative interaction: humans pose substantive questions, and

the chatbot primarily responds to fulfill these requests [1,
2]. Recent work has sought to make dialog systems more
goal-directed and proactive by incorporating mixed-initiative
strategies—for example, creating documents [8], persuading
users to donate to charity, enhancing users’ emotional well-
being [9–12], or clarifying ambiguous human requests [13–
15]. However, none of these systems addressed mixed-
initiative dialog in grounded, real-world collaborative sce-
narios involving physical manipulation tasks.

In the human-robot interaction (HRI) field, researchers
have developed human-robot collaboration systems that in-
teract through language but are restricted to single-initiative
dialog. Some of these systems integrate LLMs as task
planners or delegators [16–18] for tasks like real-world
cooking [16] and object sorting [17]. Other systems im-
plement a leader-follower paradigm in simulated worlds,
where the leader issues natural language instructions for the
follower to execute [19–22]. Single-initiative HRI systems
can ask humans for clarification [23] or assistance [24–26],
or inform humans of their observations [27–29]. However, by
supporting only single-initiative dialog, these systems lack
the capacity to adapt to the evolving nature of the human,
robot, and environment—limiting their capacity to find the
optimal division of labor that respects user preferences [17].

Some works in HRI have explored mixed-initiative col-
laborative systems without dialog, only with physical ac-
tions [30–35]. In particular, [36] studied separate regimes of
agent initiative (human-initiative, requesting help, or robot-
initiative, proactively helping), but failed to support a natural
human-robot dialog. By focusing solely on physical actions,
these prior works overlook the critical role of communication
in effective collaboration, thereby limiting the flexibility
of the human-robot team. With MICoBot, we enable both
agents to take initiative—through both physical and verbal
actions—via task-grounded dialog.

Several prior works in robotics and planning have studied
the problem of human-robot optimal task allocation,
typically optimizing the time to perform a task or min-
imizing idle agents, posing the problem as a scheduling



optimization [37, 38]. Others have prioritized different ob-
jectives, such as safety [39] through the formulation of a
constrained optimization problem [40]. While these solutions
may achieve shorter execution times, they assume a priori
known capabilities and availability of all agents, including
both robots and humans. In contrast, MICoBot can adapt to
the specific human’s willingness to help by estimating its
availability based on previous dialog.

III. PROBLEM SETTING: TASK COLLABORATION WITH
MIXED-INITIATIVE DIALOG
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Fig. 3: Proposed MDP for Mixed-Initiative Collaboration.

MDP Formulation. We study how human-robot col-
laborative manipulation can be facilitated through mixed-
initiative dialog. We assume that both agents can observe the
state of the world, s ∈ S, and perform actions, a ∈ A = Ap∪
Av , comprised of a physical action space, Ap (e.g., move
objects, open them, etc.), that directly affect the physical
state of the environment s, and a free-form, natural language
verbal action space, Av , which is directly observed by the
other agent but does not change the physical state. We model
the problem as a Markov Decision Process (MDP) from the
robot’s point of view (see Fig. 3), where on each environment
step, the robot performs some action, aR ∈ Ap,R ∪ Av,R

and receives an observation o = [I, av,H , sproprio ] consisting
of an RGB-D image I , an optional verbal action from the
human partner av,H , and the robot’s proprioceptive state
sproprio . Within each environment step, the human may
perform a series of actions, aH ∈ Ap,H ∪ Av,H , in its own
physical and verbal action space after perceiving the world
state and robot’s previous dialog, av,R.

Physical and Verbal Action Spaces. The physical and
verbal action spaces, Ap and Av , are shared between both
agents. Each element of these action spaces is a param-
eterized action primitive represented by the pair, ap/v =
(ωp/v, θp/v). ωp is the type of the physical action primitive
(open, pick-and-place, etc.) and θp are the corre-
sponding parameters (e.g., what object to open or pick
and where to place it). We assume that humans are fully
competent in executing all steps of a collaborative household
manipulation task but may be unwilling or unavailable to
perform some or all required actions. Their behavior can
range from indifferent (never acting) to overly proactive
(completing the entire task without robot involvement).

In contrast, robots often have limited manipulation capa-
bilities and may be unable to execute more complex actions,
in which case it uses verbal actions to communicate with
the human. ωv is the type of the verbal action primitive
(ask_human_for_help, respond_to_human, etc.),
and θv are the corresponding parameters defining the context
of the verbal primitive (e.g., what step the robot needs help
on). While the types of verbal actions are limited, each
generates freeform and open-vocabulary language. MICoBot
first selects an abstract verbal action from this space, then
translates it into a natural language utterance to negotiate
with the human—conveying its requests and the assistance it
requires for successful collaboration. This involves reasoning
over asymmetric human and robot physical capabilities to
devise collaboration strategies that maximize task success
while minimizing human effort.

Collaborative Task Definition and Problem State-
ment. We assume the collaborative task is defined by a
task plan of length T , known to both agents and repre-
sented as a sequence of unassigned physical action primi-
tives, [ap,0, ..., ap,T−1], such as [(pick-and-place(box,
table), . . . , close(box)], obtained from the task instruc-
tions or off-the-shelf task planner. To complete the manipula-
tion task while minimizing human effort, the system must al-
locate steps of the plan between the two agents—negotiating
with the human through robot-initiated dialog to suggest
assignments, adapting to human preferences through human-
initiated dialog, and ultimately executing its assigned phys-
ical actions. At each step t, the system must compute the
best allocation of the remaining steps of the plan, G =
[gt, ..., gT−1], where ∀t, gt ∈ {H,R}. The optimal alloca-
tion G∗ maximizes the expected task success probability
while minimizing total human effort. These objectives are
inherently competing: a policy focused solely on maximizing
success might allocate all steps to the human (assumed to be
perfectly competent); conversely, minimizing human effort
alone would assign all steps to the robot, even when it may
be incapable of completing certain steps. The optimization
also incorporates constraints conveyed through the mixed-
initiative dialog history, such as task allocation requests or
proposed task splits. The resulting allocation G∗ determines
whether the robot executes the current step (R) or negotiates
with the human for assistance (H).

IV. MICOBOT: MIXED-INITIATIVE COLLABORATIVE
ROBOT

A. Collaborative Task Allocation as Optimization.

A helpful physical collaborator must aim for task suc-
cess with minimal human effort while adhering to human
preferences expressed in dialog (i.e., for certain steps to
be done by a certain agent). Therefore, we formulate our
objective for collaborative task allocation as a constrained
optimization problem, where constraints are updated based
on dialog exchanges. To avoid a complex multi-objective
formulation, we combine success probability and effort into
a single Q-value by building on prior work on temporal
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Fig. 4: MICoBot consists of 3 decision-making modules: a meta-planner that produces a collaborative strategy expressed
through adaptive planning code, a planner that executes the code and optimizes our objective (Eq. 1) to decide the next
primitive action, and an action executor that outputs the low-level pose trajectory or verbal utterance to say to the human.

distances in RL [41]. Then, to allocate task steps, MICoBot
compares robot and human Q-values.

We assume each task step is executed by a multi-task
policy π that performs continuous low-level control at a fixed
control frequency. In this low-level MDP (distinct from the
high-level task MDP described in Sec. III), we define the
reward as r = −1 per time step until the skill completes
or times out, at which point rtermination = 0. A well-
trained Q-function, Q : ot × at = (ωt, θt) 7→ R with a
discount factor of 1, thus represents the negative expected
number of timesteps until skill completion from a given
state. For a perfectly competent agent (i.e., human), this
corresponds to the average timesteps required to perform
the action. For an imperfect agent that may fail, the Q-
function reflects a weighted expectation over both successful
and failed outcomes—where failure contributes a significant
timestep penalty (timeout) weighted by its probability. We
assign each agent a distinct Q-function: QR for the robot and
QH for the human. These agent-specific Q-functions thus
provide a unified, interpretable cost metric for comparing
step allocations, jointly capturing both execution time (effort)
and likelihood of success.

However, directly optimizing step allocation using only
these two Q-functions diverges from realistic human-robot
collaboration scenarios in three ways: (1) human and robot
effort are valued equally, ignoring the higher worth of
human time and attention; (2) the human is assumed to
always comply with robot-initiated requests, overlooking
variability in willingness or availability; and (3) human-
initiated requests or preferences are not considered, limiting
the system’s adaptability to human intent. To address (1), we
introduce a human-effort factor, α, a ratio valuing human
effort to robot effort. To address (2), human Q-values are
adjusted with an inferred probability, pH,t, of the human
agreeing to perform action aH,t = ωt(θt) when asked. For
less cooperative users, this probability lowers the expected

success of aH,t, effectively increasing the magnitude of
the negative Q-value due to potential human refusal. To
address (3), we enforce constraints, C1, . . . , Cn, extracted
from human-initiated dialog—such as explicit requests to
perform specific steps themselves or delegate them to the
robot. Altogether, we propose the following objective to find
the optimal task allocation G∗:

max
gt,...,gT

T−1∑
t

(
1gt=H · α

pH,t
+ 1gt=R

)
Qgt(st, at),

s.t. C1, . . . , Cn are satisfied

(1)

that minimizes expected time-to-success and human effort.

B. MICoBot Framework

MICoBot is a three-level framework (Fig. 4) that includes
1) a meta-planner that processes human dialog and generates
a collaborative strategy expressed in code, 2) an iterative
planner that updates planning state variables and allocates
and decides the next action to perform by executing the code,
and 3) an action executor that carries out the action primitive,
either through low-level physical actions or by formulating
a dialog utterance to the human.

L1: Meta-planner. The meta-planner produces adaptive
planning code that dictates the overall strategy for L2 and L3
to follow. Based on the most recent human dialog, the current
symbolic state of the world, the task plan, and approximately
15 in-context learning (ICL) examples, it generates two
pieces of code: first, task allocation code to adapt the
optimization computation, such as to map human dialog into
additional constraints, and second, action selection code for
how to choose the next action, such as whether to engage
in additional dialog, proposals to split up the task with the
human, or negotiation rounds before proceeding further with
physical steps in the plan. The meta-planner is implemented
as an LLM-based (GPT-4o) coder, and prompts can be found
on our project website.1



L2: Iterative Planner. The iterative planner runs code
from the meta-planner (L1) to make two key decisions:
whether to initiate dialog and which verbal or physical
action to perform. L2 runs in two stages. First, it performs
constrained optimization to find the best task allocation for
the remaining task steps. To do this, we evaluate Eq. 1 under
all possible task allocations fulfilling the constraints. Initially,
the planner attempts to incorporate all constraints from the
mixed-initiative dialog history. If no feasible allocation is
found (e.g., human asked the robot perform a step it is
incapable of), the planner iteratively relaxes the most recent
constraint, and the robot verbally explains its incapability.

To quantify Eq. 1, MICoBot requires accurate Q-functions
that capture each agent’s expected effort and success proba-
bility on each task step. To collect data to learn the robot’s
Q-function (QR), we use the OmniGibson simulator [42],
configured with a coarse model of the real-world task, en-
vironment, and action primitives, recording both completion
times and success rate. We train a supervised network as QR

that predicts the expected timesteps for an action primitive
a to succeed from a given symbolic state o. Conditioning
QR on symbolic states minimizes the sim-to-real gap when
we deploy the function to our real-world setting. When
estimating the human’s Q-function (QH ), we assume perfect
competence (i.e., no execution failures). Thus, we simply
obtain time estimates for each step from an LLM predicting
how long a human needs to execute action at = ωt(θt), plus
a travel time estimate based on human-object distances.

To adapt to changing human helpfulness, MICoBot esti-
mates the probability of human assistance at the current t-
th timestep, pH,t, using an LLM-based sentiment analysis
over prior human-robot dialog. This enables MICoBot to
adapt to temporally-changing user sentiments. After deciding
the optimal task allocation, the second stage of L2 executes
meta-planner action selection code to generate the optimal
action a = ω(θ) to execute: a physical mobile manipulation
primitive ω to perform a task step on objects specified in θ,
or a verbal primitive ω to initiate dialog to ask for help,
propose splitting up steps, or respond to human-initiated
dialog regarding specific task steps specified in θ.

L3: Action Executor. The action executor performs the
action primitive selected by the planner (L2). For physical
actions, it generates a trajectory for navigation and arm
movement to reach the location of and manipulate the
target object while avoiding obstacles. We build a pipeline
similar to [43] that uses the move_base ROS package
for navigation path planning over a 2D occupancy map,
and Grounding DINO [44] to segment the target object
from an open-world scene based on the object specified
in θ. We backproject segmented image pixels from RGB-
D camera data into a 3D point cloud to identify graspable
or placeable points in the robot’s workspace that the arm
reaches through inverse kinematics (IK). For verbal actions,
an LLM generates free-form natural language utterances to
communicate with the human based on the dialog intent ω
and verbal action parameters θ decided in L2. The LLM
uses 10 ICL examples to generate language grounded in the

context of the task and dialog.
Hierarchical Plan. To streamline communication for

long-horizon task plans, MICoBot groups adjacent low-
level steps into semantically meaningful abstract actions
that can be discussed more succinctly with the human. The
system only descends to a finer-grained level of detail during
negotiation over low-level step assignments, which reduces
the frequency and complexity of dialog, resulting in more
efficient and user-friendly communication.

V. EXPERIMENTAL EVALUATION

We evaluate MICoBot in the real-world, on a Tiago mobile
manipulator working with 18 unique human participants
on household tasks, and in simulation, on a collaborative
framework we developed atop Mini-Behavior gridworld [4].
In our simulation framework, a robotic agent collaborates
with a simulated human with parametrizable helpfulness and
mood-varying dialog, which allows for larger-scale experi-
mentation and controlled comparisons across methods across
a wider range of human behavior and dialog dynamics. A
successful robotic collaborator must achieve task success
(our primary evaluation metric) while minimizing human
effort (our secondary metric). We also report subjective
measures of robot behavior, including user satisfaction,
preference rankings, and Likert-scale ratings.

Environment. In the real-world, we perform our experi-
ments in a mock apartment with a kitchen and living room
area with commonplace furniture. In all of our tasks, the
robot and human work together on opposite sides of a coffee
table. Simulating a household setting, the participant spends
nearly all of their time on the couch, where they can do their
personal (i.e., non-task-related) work. The human can be as
inactive or proactive as they wish in performing physical and
verbal actions as defined in Section III (though we continue
the trial if they initiate dialog beyond the scope). Each human
user study consists of two 20-30 minute trials, in which
they collaborate with both our method and a pure LLM
baseline, ordered randomly. All trials terminate under any of
the following conditions: a primitive fails irrecoverably, 4T
steps have elapsed for a plan of length T , an infeasible step
is allocated to the robot twice consecutively, or the human
refuses twice to perform a step infeasible for the robot.

Skills. To perform long-horizon household tasks, the robot
has access to several mobile-manipulation action primitives.
pick_place_mobile(obj, place_loc) moves to
obj and places it atop place_loc, another object in a
potentially different room. pour(obj, cont) travels to
obj and pours its contents into cont. Finally, fold(obj)
folds down box flaps.

To initiate and respond within mixed-initiative dialog,
the robot uses the following open-vocabulary verbal ac-
tion primitives for dynamic collaboration with the human:
ask_for_human_help on a step the human is best
suited to perform, propose_split to split steps with
the human, explain_incapability to ask the hu-
man to perform a step that the robot can’t perform, and



Pour Package in Bowl
n = 6

Assemble Toy Car
n = 6

Pack Gift Box
n = 6

Average
n = 18

MICoBot LLM MICoBot LLM MICoBot LLM MICoBot (ours) LLM

Entire Task Success Rate (%, ↑) 100 83 67 0 67 0 77.8± 15.7 27.8± 39.3
% of task steps completed (↑) 100 93 94 31 88 50 93.8± 5.1 58.2± 26.0
% of steps performed by Human 27 29 60 5 35 21 40.5± 14.2 18.2± 9.7

% Users Preferring ... (↑) 67 33 100 0 67 33 77.8 22.2
Communicative ability (↑, /5) 3.7 3.8 4.3 1.3 2.8 2.3 3.6± 1.0 2.5± 1.4
Awareness of its Limitations (↑, /5) 3.3 3.3 3.7 1.2 4.2 2.5 3.7± 1.4 2.3± 1.6
Overall Satisfaction working w/ Robot (↑, /5) 3.8 3.7 3.5 1.5 3.5 2.5 3.6± 0.8 2.6± 1.4

TABLE I: Comparison between MICoBot (ours) and the LLM baseline across three real-world tasks on both objective (top
3 rows) and subjective (bottom 4 rows) metrics. Ratings out of 5 are on the Likert scale. Through more effective task
allocation and communication, MICoBot achieves much higher task success rates and overall user satisfaction.

respond_to_human to accept/reject requests the
robot is capable/incapable of executing.

Baselines. Because multiple components of our method
are powered by LLMs, we compare our approach to a pure
LLM baseline (LLM) given the same information as our
meta-planner: symbolic state, dialog history, task plan, and
α human-robot effort tradeoff factor. The LLM baseline is
also provided with a list of the robot’s available skills and
assumes that the human always successfully completes a step
once they agree to perform it. The LLM baseline is prompted
to produce a plan allocation G that primarily optimizes for
task success and secondarily minimizes human effort.

To control for the amount of human effort in the user
studies, we compute an additional random allocation baseline
that does not involve a human participant, RECB (random
effort-controlled baseline). Let pc denote the proportion of
steps done by the human in our method’s trials. RECB
randomly allocates the current step to the human with
probability pc and assumes a perfectly helpful human and
oracle robot primitives with 100% success rate.

In simulation, we additionally compare against an RL
baseline (hierarchical task allocator + robot policy) and a
naive Random baseline allocating either agent (with proba-
bility 50%) to perform the next step.

Ablations. To measure the importance of mixed-initiative
dialog, we perform the following ablations in simulation:
H-init and R-init, where the human or the robot alone,
respectively, can initiate any dialog. We further ablate com-
ponents of MICoBot in simulation by running it w/o P_H
(no pH,t estimation) and w/o Plan Hierarchy (where our
method talks to the human in terms of granular, low-level
steps instead of more understandable, high-level subtasks).

Tasks. We perform user studies on 3 real-world tasks,
each with 6 users for a total of 18 unique participants. (1)
Pour package into bowl: bring the bowl, package, and
scissors from the kitchen, cut open the package, and pour
it into the bowl. (2) Assemble toy car: bring the car parts,
wheels, and drill from the shelf to the coffee table, drill
in the wheels, switch the drill bit, and finally drill in the
windows and seats. (3) Pack gift box: fold the gift box, put
tissue wrapping paper and a toy car in the box, close the lid,
wrap ribbons, and tape down a gift bow. Each task is 5 to 8

mobile manipulation steps long and requires varying degrees
of human involvement.

Experimental analysis. Our experiments are designed to
answer the following research questions:

(1) Does our method achieve the best trade-off between
task success and minimizing human effort? In our real-
world user study (Table I), MICoBot achieves a 78% task
success rate compared to 28% for the LLM baseline (statisti-
cally significant with p-value 0.007 under Fisher’s exact test).
Additionally, MICoBot achieves a 94% task step completion
rate compared to the baseline’s 58% (statistically significant
with p-value 0.002 under the Wilcoxon-signed-rank test).
MICoBot understood its own limitations (through affordance
functions trained in simulation), and was hence better at
leveraging human assistance effectively on the steps it was
ill-suited to perform. The LLM baseline tended to prioritize
minimizing human effort over task completion by allocating
the robot multiple steps it was incapable of, since the LLM
lacked an understanding of the robot’s affordances. Our
method elicited more human effort than the baseline (40% vs
18%), so to control for the amount of human effort received,
we compare our method to RECB in Figure 5. Despite RECB
assuming oracle robot primitives and a perfectly cooperative
human, our method still significantly outperforms it by more
effectively balancing between success and human workload.

(2) How do users feel about working with our system?
The A/B blind preference test in Table I shows that 78%
of users preferred our method over the LLM baseline. Our
method also significantly outperformed the baseline in user
scores on overall satisfaction, communicative ability, and
capability in asking for a suitable amount of help (statistically
significant under the Wilcoxon-signed-rank test with p-values
ranging from 0.007 to 0.024; see Figure 6). In contrast,
the LLM baseline often failed to express when it needed
help and was unwilling to reject human requests it could
not fulfill, leading to over-promises and task failures. A
representative dialog exchange, available on our project site,1

shows MICoBot successfully persuading an initially reluctant
user to perform a step the robot was incapable of executing.

(3) Is mixed-initiative dialog critical to our method’s
performance? Figure 5 (bottom) shows that our full method
outperforms both ablated variants that restrict dialog to
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Fig. 5: In both real-world user studies (top) and simulation
trials with a simulated human (bottom), our method (red)
demonstrates the best tradeoff in achieving task success
(y-axis) for a given amount of human effort (x-axis) than
baselines (blue) and our method’s ablations (pink).
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Fig. 6: Our method substantially outperforms the pure LLM
baseline in user ratings averaged over all n = 18 participants.

single-initiative modes: robot-only initiation (R-init) and
human-only initiation (H-init). H-init performs especially
poorly, as it prevents the robot from requesting help for
steps it cannot execute. R-init performs slightly worse than
the full method because it does not allow the human to
proactively initiate dialog and assist when appropriate. These
results underscore the importance of mixed-initiative dialog
in enabling flexible, robust human-robot collaboration.

In real-world user studies, MICoBot engaged in 2.4 dialog
initiative shifts per trial, compared to the LLM baseline’s
1.1. This enabled MICoBot to boost human acceptance
of help requests from 55% to 86%. The LLM baseline
made far fewer help requests per trial (0.9 vs. MICoBot’s
2.9) and achieved a smaller acceptance increase (70% to
75%). This demonstrates mixed-initiative dialog is critical
to collaborative discussion and task success.

VI. CONCLUSION

We proposed MICoBot, a real-world robotic system that
improves collaboration on long-horizon mobile manipulation
tasks through mixed-initiative dialog with humans. Our work
unifies two previously unconnected lines of research: mixed-
initiative dialog and HRI. To this end, we formulated a novel
optimization function and robotic framework using mixed-
initiative dialog as a rich interface for task allocation to
maximize task success while minimizing human effort and
complying with verbally-expressed human preferences. Real-
world user studies with 18 human participants and extensive
trials in simulation demonstrate the efficacy, adaptability, and
user satisfaction of our method across a diverse range of
human physical and verbal behavior.

VII. LIMITATIONS AND FUTURE WORK

MICoBot represents our pioneering effort on facilitat-
ing mixed-initiative human-robot interaction through mixed-
initiative natural-language dialog. While we focused on dele-
gating steps for long-horizon manipulation tasks in a manner
that maximizes task success and minimizes human effort,
we believe this paper opens up exciting new avenues for
future work. These include enabling both agents to learn to
provide and incorporate spatial-temporal feedback to each
other while performing a task, share relevant task information
in an imperfect-information setting, and replan and redefine
a task as necessary, all through mixed-initiative dialog.

MICoBot has a number of limitations. First, it assumes
that the human and robot work sequentially, and cannot
handle cases where a robot and human wish to collaborate
simultaneously on the same step in the plan, such as if
the robot holds a roll of tape and the human cuts from it.
Second, MICoBot assumes a fixed plan with a predetermined
ordering of steps, where the human has a general, high-level
understanding of the plan (but not the low-level steps that
the robot plans over). Our method could be improved with a
more nuanced definition of “effort” beyond our time-based
metric. Finally, pH,t prediction can be improved, such as
by processing tone-of-voice and facial expressions, to enable
producing more emotionally understanding dialog, which can
improve task success and user satisfaction.
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